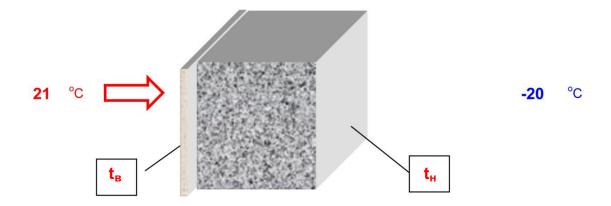
THERMAL CALCULATION Based on the building thermal imaging results, dated 05 March 2013.

Introduction

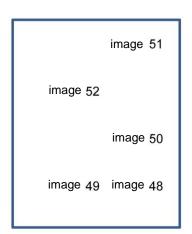
- 1. Any inquiries, related to this thermal calculation, shall be forwarded to OOO Teplozashchita, telephone (844) 331-39-50, www.teploza.ru, teploza@mail.ru.
- 2. Region Sergiyev Posad, prospect Krasnoi Armii, 234, building 3, Moscow Oblast.

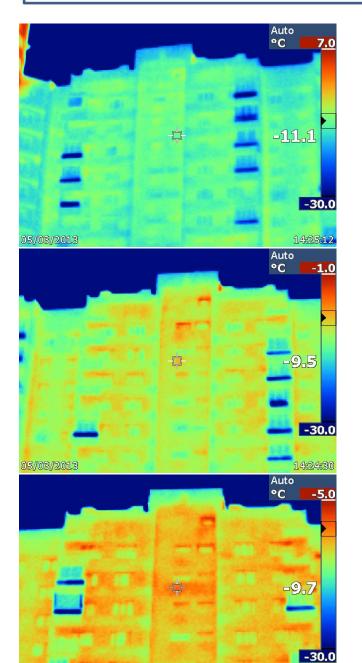
3. Object


Residential apartment block thermal insulation.

Phase 1 – building thermal imagining prior to insulation application.

4. Input data


t _B	Rated indoor air temperature	21°C
t _{on}	Average temperature of the heating period (SNiP 23-01-99, table 1)	minus 3.1 °C
t _H	Average temperature of the coldest five-day period (SNiP 23-01-99, table 1)	minus 27 °C
t _H	Ambient air temperature at time of thermal imaging	minus 20 °C


Enclosing structure design.

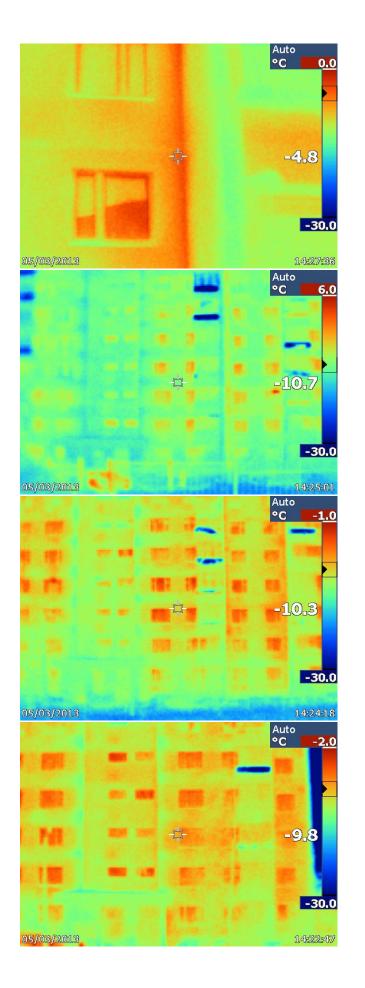
Thermal imaging survey layout.

image 58	image 56	image 54
	image 61	
image 57	image 55 <u>image 59</u>	image 53 image 60

05/03/2013

Image 58

Surface temperature in the measurement point: minus 11.1 ° C.


Image 56

Surface temperature in the measurement point: **minus 9.5** °C.

Image 54

14:23:20

Surface temperature in the measurement point: **minus 9.7** °C.

Image 61

Surface temperature in the measurement point: **minus 4.8** °C

Image 57

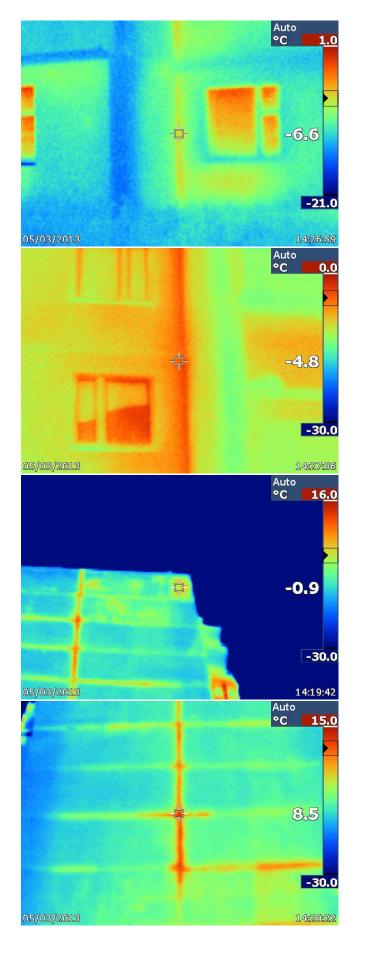

Surface temperature in the measurement point: **minus 10.7** °C.

Image 55

Surface temperature in the measurement point: **minus 10.3** °C.

Image 53

Surface temperature in the measurement point: **minus 9.8** °C.

Image 59

Surface temperature in the measurement point: **minus 6.6** °C.

Image 60

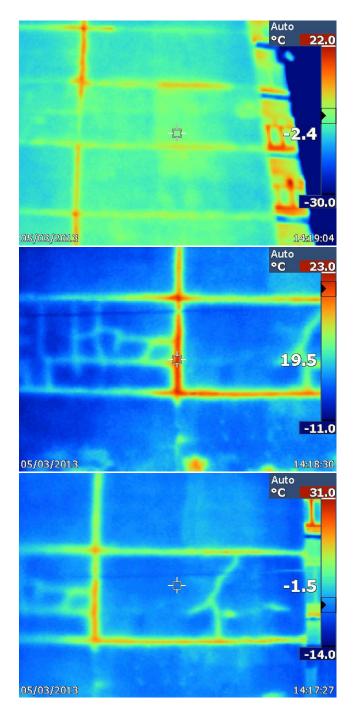

Surface temperature in the measurement point: **minus 4.8** °C.

Image 51

Surface temperature in the measurement point: **minus 0.9** °C.

Image 52

Surface temperature in the measurement point: **8.5** °C.

Image 50

Surface temperature in the measurement point: **minus 2.4** °C.

Image 49

Surface temperature in the measurement point: **19.5** °C.

Image 48

Surface temperature in the measurement point: minus **1.5** °C.

Enclosing structure heat transfer resistance value determination

Region	The city Sergiyev Posad		
Structure	Plastering with cement – sand grout	δ_1	<i>0.02</i> m
		λ_1	<i>0.93</i> W/m °C
	Haydite concrete slab Y=800 kg/m³	δ_2	0.32 m
		λ_2	<i>0.24</i> W/m °C
	NA	δ_4	<i>0.00</i> m
		λ_4	1.00 W/m °C
	NA	δ_4	<i>0.00</i> m
		λ_4	1.00 W/m °C
	NA	δ_5	<i>0.00</i> m
		λ_5	1.00 W/m °C
	NA	δ_6	<i>0.00</i> m
		λ_6	1.00 W/m °C

1. Rated heat transfer resistance of this wall

$$R_o = \frac{1}{\alpha_B} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + \frac{\delta_4}{\lambda_4} + \frac{\delta_5}{\lambda_5} + \frac{\delta_6}{\lambda_6} + \frac{1}{\alpha_H}$$

Where

R_o	Heat transfer resistance	1.52 m ² °C/W
α_B	Wall heat absorption coefficient	8.70 W/ m ² °C
	SNiP II – 3- 79* table 4.	
$oldsymbol{\delta_1}$	Cement – sand grout plastering	0.02 m
λ_1	Heat conductivity coefficient	0.93 W/ m ² °C
$oldsymbol{\delta_2}$	Haydite concrete slab 'Y=800 kg/m 3	0.32 m
λ_2^-	Heat conductivity coefficient	0.24 W/ m ² °C
δ_3^-	NA	0.00 m
λ_3	Heat conductivity coefficient	1.00 W/ m ² °C
δ_4	NA	0.00 m
λ_4	Heat conductivity coefficient	1.00 W/ m ² °C
δ_5	NA	0.00 m
λ_5	Heat conductivity coefficient	1.00 W/ m ² °C
δ_6	NA	0.00 m
λ_6	Heat conductivity coefficient	1.00 W/ m ² °C
α_H	Wall heat transfer coefficient	23 W/ m ² °C
11	SNiP II-3-79* table 6*	

2. Estimation of heating season degree – day (HSDD).

$$\mathsf{HSDD} = (t_B - t_{\mathsf{O}\mathsf{\Pi}}) \, Z_{\mathsf{O}\mathsf{\Pi}}$$

Where

HSDD	Heating season degree - day	5157 °C day
t_{B}	Rated indoor air temperature	21 °C
$t_{O\Pi}$	Average heating season temperature	minus 3.1 °C
	SNiP 23-01-99 table 1	
$Z_{O\Pi}$	Heating season period	214 days
0,,	SNiP 23-01-99 table 1	•

According to SNiP II-3-79*, tables 1a and 1b. enclosing structure full heat transfer resistance shall be as follows:

Sanitary – hygienic specification: $R_o^{TP} = 1.38 \text{ m}^2 \text{ °C /W}$ Energy efficiency specification, $R_o^{TP} = 1.83 \text{ m}^2 \text{ °C /W}$

phase 1

Energy efficiency specification, $R_o^{TP} = 3.2 \text{ m}^2 \text{ °C /W}$

phase 2

3. Rated heat loss

$$q = \frac{t_B - t_H}{R_o}$$

Where

		Winter	Theoretica	ıl
q	Heat loss	16	27	W/m ²
t_B	Indoor air temperature	21	21	°C
t_H^-	Outdoor air temperature	minus 3.1	minus 20	°C
R_o	Heat transfer resistance,	1.51	1.51	m ² °C/W
Ü	calculation 1, item 2			

4. Enclosing structure exterior surface temperature

 $T_B = t_B - n(t_H - t_B)/R_o \alpha_B$

Where	TB OB MOCH OB)/110 WB				
		Winter	Theoretical value	Actual value (image 58) minus 11.1	
T_B	Surface temperature	minus 1	minus 16.9	minus 11.1	°C
t_H	Outdoor air temperature	minus 3.1	minus 20	minus 20	°C
n	Coefficient SNiP II – 3-79* table 3*	1	1	1	
t_B	Indoor air temperature	21	21	21	°C
R_o	Heat transfer resistance (calculation 1)	1.51	1.51	0.53	m ² °C/W
a_B	Coefficient of heat transfer to the ambient air	8.7	8.7	8.7	W/m ² °C

5. Enclosing structure inner surface temperature

 $T_B = t_B - n(t_B - t_H)/R_o \alpha_B$

Where	1 B -	$-\iota_B - \iota_L - \iota_B -$	$\iota_H)/\kappa_0 \iota_B$			
VVIICIC		Winter	Theoretical value	Actual value 13.0		
T_B	Inner surface temperature	16	15	<mark>13</mark>	°C	
t_B	Indoor air temperature (as measured in apartment 280)	18	18	18	°C	
n	Coefficient SNiP II – 3-79* table 3*	1	1	1		
t_H	Outdoor air temperature	minus 3.1	minus 20	minus 20	°C	
R_o	Heat transfer resistance (calculation 1)	1.51	1.51	0.90	m ² °C/W	
a_B	Coefficient of enclosing structure heat absorption (SNiP II – 3-79* table 4*)	8.70	8.70	8.70	W/m ² °C	

SUMMARY

Wall exterior surface averaged temperature was applied as input for the surveyed residential apartment block enclosing structure heat transfer resistance calculation.

The measurements were made using thermal imaging survey.

Ambient air temperature was minus **20** °C at time of the thermal imaging survey.

Wall exterior surface average temperature was minus 10.7 °C.

- Surveyed building enclosing structure design heat transfer resistance:
 1,51 m² °C /W.
- 2. Surveyed building enclosing structure actual heat transfer resistance: 0.90 m² °C /W
- 3. Surveyed building enclosing structure heat transfer resistance as required by the sanitary norms: 1.38 m² °C /W
- 4. Surveyed building enclosing structure heat transfer resistance as required by energy efficiency norms: 1,83 m² °C /W.

The surveyed building does not comply with the sanitary norms, all enclosing structures shall be winterized.

In addition, all inter-panel joints shall be inspected and winterized.

List of references.

SNiP 23 - 01 – 99. Construction Climatology.

SNiP 23 - 02 – 2003. Thermal Protection of Buildings.

SNiP II - 3 - 79*. Construction Heat Engineering.

Reference Book. Thermal Insulation. STROIIZDAT - 1976.

TU -5768-001-62595647-2009. Super-thing thermal insulation coating TEMP-COAT®.